
Effects of Acute and Chronic Exposure to a Mixed Field of Neutrons and Photons and Single or Fractionated Simulated Galactic Cosmic Ray Exposure on Behavioral and Cognitive Performance in Mice
Author(s) -
Sarah Holden,
Ruby Perez,
Reed Hall,
Christina M. Fallgren,
Brian Ponnaiya,
Guy Garty,
David J. Brenner,
Michael M. Weil,
Jacob Raber
Publication year - 2021
Publication title -
radiation research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 124
eISSN - 1938-5404
pISSN - 0033-7587
DOI - 10.1667/rade-20-00228.1
Subject(s) - open field , cosmic ray , aspirin , medicine , physics , nuclear medicine , astrophysics
During space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons. In C3H male mice, there were effects of acute radiation exposure on activity levels in the open field containing objects. In addition, there were radiation-aspirin interactions for effects of chronic radiation exposure on activity levels and measures of anxiety in the open field, and on activity levels in the open field containing objects. There were also detrimental effects of aspirin and chronic radiation exposure on the ability of mice to distinguish the familiar and novel object. Finally, there were effects of acute GCRsim on activity levels in the open field containing objects. Activity levels were lower in GCRsim than sham-irradiated mice. Thus, acute and chronic irradiation to a mixture of neutrons and photons and acute and fractionated GCRsim have differential effects on behavioral and cognitive performance of C3H mice. Within the limitations of our study design, aspirin does not appear to be a suitable countermeasure for effects of chronic exposure to space radiation on cognitive performance.