z-logo
open-access-imgOpen Access
High‐Throughput Identification of Genes Promoting Neuron Formation and Lineage Choice in Mouse Embryonic Stem Cells
Author(s) -
Falk Anna,
Karlsson Tobias E.,
Kurdija Sanja,
Frisén Jonas,
Zupicich Joel
Publication year - 2007
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2006-0485
Subject(s) - biology , embryonic stem cell , stem cell , cellular differentiation , gene , microbiology and biotechnology , adult stem cell , cell type , genetics , cell
The potential of embryonic stem cells to differentiate to all cell types makes them an attractive model for development and a potential source of cells for transplantation therapies. Candidate approaches have identified individual genes and proteins that promote the differentiation of embryonic stem cells to desired fates. Here, we describe a rapid large‐scale screening strategy for the identification of genes that influence the pluripotency and differentiation of embryonic stem cells to specific fates, and we use this approach to identify genes that induce neuron formation. The power of the strategy is validated by the fact that, of the 15 genes that resulted in the largest increase in neuron number, 8 have previously been implicated in neuronal differentiation or survival, whereas 7 represent novel genes or known genes not previously implicated in neuronal development. This is a simple, fast, and generally applicable strategy for the identification of genes promoting the formation of any specific cell type from embryonic stem cells. Disclosure of potential conflicts of interest is found at the end of this article.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here