z-logo
open-access-imgOpen Access
Basic Fibroblast Growth Factor Controls Migration in Human Mesenchymal Stem Cells
Author(s) -
Schmidt Annette,
Ladage Dennis,
Schinköthe Timo,
Klausmann Ursula,
Ulrichs Christoph,
Klinz FranzJosef,
Brixius Klara,
Arnhold Stefan,
Desai Biren,
Mehlhorn Uwe,
Schwinger Robert H.G.,
Staib Peter,
Addicks Klaus,
Bloch Wilhelm
Publication year - 2006
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2005-0191
Subject(s) - mesenchymal stem cell , basic fibroblast growth factor , biology , microbiology and biotechnology , fibroblast growth factor , cell migration , growth factor , stromal cell , immunology , cell , cancer research , biochemistry , receptor
Little is known about the migration of mesenchymal stem cells (MSCs). Some therapeutic approaches had demonstrated that MSCs were able to regenerate injured tissues when applied from different sites of application. This implies that MSCs are not only able to migrate but also that the direction of migration is controlled. Factors that are involved in the control of the migration of MSCs are widely unknown. The migratory ability of isolated MSCs was tested in different conditions. The migratory capability was examined using Boyden chamber assay in the presence or absence of basic fibroblast growth factor (bFGF), erythropoietin, interleukin‐6, stromal cell‐derived factor‐β, and vascular endothelial growth factor. bFGF in particular was able to increase the migratory activity of MSCs through activation of the Akt/protein kinase B (PKB) pathway. The results were supported by analyzing the orientation of the cytoskeleton. In the presence of a bFGF gradient, the actin filaments developed a parallelized pattern that was strongly related to the gradient. Surprisingly, the influence of bFGF was not only an attraction but also routing of MSCs. The bFGF gradient experiment showed that low concentrations of bFGF lead to an attraction of the cells, whereas higher concentrations resulted in repulsion. This ambivalent effect of bFGF provides the possibility to a purposeful routing of MSCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here