
Variable Reprogramming of the Pluripotent Stem Cell Marker Oct4 in Mouse Clones: Distinct Developmental Potentials in Different Culture Environments
Author(s) -
Boiani Michele,
Gentile Luca,
Gambles Vivian V.,
Cavaleri Fatima,
Redi Carlo A.,
Schöler Hans R.
Publication year - 2005
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2004-0352
Subject(s) - biology , reprogramming , blastocyst , embryonic stem cell , somatic cell nuclear transfer , induced pluripotent stem cell , stem cell , microbiology and biotechnology , somatic cell , genetics , cellular differentiation , cloning (programming) , inner cell mass , embryo , embryogenesis , cell , gene , computer science , programming language
A prevailing view of cloning by somatic‐cell nuclear transfer is that reprogramming of gene expression occurs during the first few hours after injection of the nucleus into an oocyte, that the process is stochastic, and that the type of reprogramming needed for cloning success is foreign and unlikely to be readily achieved in the ooplasm. Here, we present evidence that the release of reprogramming capacity is contingent on the culture environment of the clone while the contribution of aneuploidy to altered gene expression is marginal. In particular, the rate of blastocyst formation in clones and the regional distribution of mRNA for the pluripotent stem cell marker Oct4 in clonal blastocysts was highly dependent on the culture environment after cumulus cell nuclear transfer, unlike that in genetically equivalent zygotes. Epigenetic modifications of genetically identical somatic nuclei continue after the first cell division of the clones and are amenable to a degree of experimental control, and their development to the blastocyst stage and appropriate expression of Oct4 predict further outcome, such as derivation of embryonic stem (ES) cells, but not fetal development. This observation indicates that development to the blastocyst stage is not equivalent to full reprogramming and lends support to the novel concept that ES cells are not the equivalent of the inner cell mass, hence the discrepancy between ES cell derivability and fetal development of clones.