z-logo
open-access-imgOpen Access
Pure Nash Equilibria in Resource Graph Games
Author(s) -
Tobias Harks,
Max Klimm,
Jannik Matuschke
Publication year - 2021
Publication title -
journal of artificial intelligence research/˜the œjournal of artificial intelligence research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.79
H-Index - 123
eISSN - 1943-5037
pISSN - 1076-9757
DOI - 10.1613/jair.1.12668
Subject(s) - nash equilibrium , best response , resource (disambiguation) , epsilon equilibrium , strategy , mathematical optimization , mathematical economics , risk dominance , graph , game theory , function (biology) , computer science , mathematics , combinatorics , computer network , evolutionary biology , biology
This paper studies the existence of pure Nash equilibria in resource graph games, a general class of strategic games succinctly representing the players’ private costs. These games are defined relative to a finite set of resources and the strategy set of each player corresponds to a set of subsets of resources. The cost of a resource is an arbitrary function of the load vector of a certain subset of resources. As our main result, we give complete characterizations of the cost functions guaranteeing the existence of pure Nash equilibria for weighted and unweighted players, respectively. For unweighted players, pure Nash equilibria are guaranteed to exist for any choice of the players’ strategy space if and only if the cost of each resource is an arbitrary function of the load of the resource itself and linear in the load of all other resources where the linear coefficients of mutual influence of different resources are symmetric. This implies in particular that for any other cost structure there is a resource graph game that does not have a pure Nash equilibrium. For weighted games where players have intrinsic weights and the cost of each resource depends on the aggregated weight of its users, pure Nash equilibria are guaranteed to exist if and only if the cost of a resource is linear in all resource loads, and the linear factors of mutual influence are symmetric, or there is no interaction among resources and the cost is an exponential function of the local resource load. We further discuss the computational complexity of pure Nash equilibria in resource graph games showing that for unweighted games where pure Nash equilibria are guaranteed to exist, it is coNP-complete to decide for a given strategy profile whether it is a pure Nash equilibrium. For general resource graph games, we prove that the decision whether a pure Nash equilibrium exists is Σ p 2 -complete.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here