
Reinforcement Learning in POMDPs With Memoryless Options and Option-Observation Initiation Sets
Author(s) -
Denis Steckelmacher,
Diederik M. Roijers,
Anna Harutyunyan,
Peter Vrancx,
Hélène Plisnier,
Ann Nowé
Publication year - 2018
Publication title -
proceedings of the ... aaai conference on artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2374-3468
pISSN - 2159-5399
DOI - 10.1609/aaai.v32i1.11606
Subject(s) - observability , reinforcement learning , computer science , hierarchy , set (abstract data type) , artificial intelligence , state (computer science) , recurrent neural network , artificial neural network , machine learning , task (project management) , mathematical optimization , algorithm , mathematics , economics , management , market economy , programming language