
The l2,1-Norm Stacked Robust Autoencoders for Domain Adaptation
Author(s) -
Wenhao Jiang,
Hongchang Gao,
Fu-Lai Chung,
Heng Huang
Publication year - 2016
Publication title -
proceedings of the ... aaai conference on artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2374-3468
pISSN - 2159-5399
DOI - 10.1609/aaai.v30i1.10274
Subject(s) - domain adaptation , computer science , artificial intelligence , deep learning , pattern recognition (psychology) , machine learning , domain (mathematical analysis) , noise reduction , adaptation (eye) , noise (video) , norm (philosophy) , classifier (uml) , mathematics , image (mathematics) , mathematical analysis , physics , law , political science , optics