
GELATIN DRYING PROCESS
Author(s) -
E.A. Silva,
Ivo Neitzel,
L.H.M. Silva
Publication year - 2001
Publication title -
brazilian journal of chemical engineering/brazilian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.313
H-Index - 52
eISSN - 1678-4383
pISSN - 0104-6632
DOI - 10.1590/s0104-66322001000400011
Subject(s) - gelatin , colloid , diffusion , process (computing) , particle (ecology) , chemical engineering , porosity , materials science , chemistry , thermodynamics , composite material , computer science , engineering , geology , organic chemistry , physics , operating system , oceanography
In one of the stages of the gelatin production process, a highly concentrated solution of gel is cooled and extruded to form gelatin noodles, which are then laid on a drying belt. Gelatin is a molecular colloid that is not porous under these drying conditions, and as a consequence, water migration occurs solely by diffusive processes. To achieve a commercial standard of dryness, the dependence of the diffusion coefficient as a function of temperature is used. This set of circumstances favors the appearance of sharp concentration gradients inside the gel. In a numerical simulation of the drying process these characteristics create difficult conditions for use of the traditional methods for solution of time-dependent partial differential equation models. This paper evaluates an implementation of the boundary element method to determine surface conditions of the gelatin particle