
Applications of an alternative formulation for one-layer real time optimization
Author(s) -
A.L. Schiavon Júnior,
Ronaldo Guimarães Corrêa
Publication year - 2000
Publication title -
brazilian journal of chemical engineering/brazilian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.313
H-Index - 52
eISSN - 1678-4383
pISSN - 0104-6632
DOI - 10.1590/s0104-66322000000400032
Subject(s) - model predictive control , control theory (sociology) , mathematical optimization , optimization problem , mimo , process (computing) , convex optimization , inverse , computer science , mathematics , control (management) , regular polygon , computer network , channel (broadcasting) , geometry , artificial intelligence , operating system
This paper presents two applications of an alternative formulation for one-layer real time structure for control and optimization. This new formulation have arisen from predictive controller QDMC (Quadratic Dynamic Matrix Control), a type of predictive control (Model Predictive Control - MPC). At each sampling time, the values of the outputs of process are fed into the optimization-control structure which supplies the new values of the manipulated variables already considering the best conditions of process. The variables of optimization are both set-point changes and control actions. The future stationary outputs and the future stationary control actions have both a different formulation of conventional one-layer structure and they are calculated from the inverse gain matrix of the process. This alternative formulation generates a convex problem, which can be solved by less sophisticated optimization algorithms. Linear and nonlinear economic objective functions were considered. The proposed approach was applied to two linear models, one SISO (single-input/single output) and the other MIMO (multiple-input/multiple-output). The results showed an excellent performance