z-logo
open-access-imgOpen Access
Dynamics of coherent vortices in mixing layers using direct numerical and large-eddy simulations
Author(s) -
Jorge Hugo Silvestrini
Publication year - 2000
Publication title -
revista brasileira de ciências mecânicas
Language(s) - English
Resource type - Journals
ISSN - 0100-7386
DOI - 10.1590/s0100-73862000000100005
Subject(s) - vortex , pairing , physics , turbulence , mixing (physics) , mechanics , large eddy simulation , direct numerical simulation , tourbillon , classical mechanics , reynolds number , condensed matter physics , quantum mechanics , superconductivity
Coherent vortices in turbulent mixing layers are investigated by means of Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Subgrid-scale models defined in spectral and physical spaces are reviewed. The new "spectral-dynamic viscosity model", that allows to account for non-developed turbulence in the subgrid-scales, is discussed. Pseudo-spectral methods, combined with sixth-order compact finite differences schemes (when periodic boundary conditions cannot be established), are used to solve the Navier- Stokes equations. Simulations in temporal and spatial mixing layers show two types of pairing of primary Kelvin-Helmholtz (KH) vortices depending on initial conditions (or upstream conditions): quasi-2D and helical pairings. In both cases, secondary streamwise vortices are stretched in between the KH vortices at an angle of 45° with the horizontal plane. These streamwise vortices are not only identified in the early transitional stage of the mixing layer but also in self-similar turbulence conditions. The Re dependence of the "diameter" of these vortices is analyzed. Results obtained in spatial growing mixing layers show some evidences of pairing of secondary vortices; after a pairing of the primary Kelvin-Helmholtz (KH) vortices, the streamwise vortices are less numerous and their diameter has increased than before the pairing of KH vortices

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here