
A NEW BENCHMARK FOR PLANTWIDE PROCESS CONTROL
Author(s) -
N. Klafke,
Maurício B. de Souza,
Argimiro Resende Secchi
Publication year - 2016
Publication title -
brazilian journal of chemical engineering/brazilian journal of chemical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.313
H-Index - 52
eISSN - 1678-4383
pISSN - 0104-6632
DOI - 10.1590/0104-6632.20160334s20150210
Subject(s) - process engineering , process control , process (computing) , disproportionation , work in process , engineering , benchmark (surveying) , computer science , chemistry , operations management , biochemistry , operating system , catalysis , geodesy , geography
The hydrodealkylation process of toluene (HDA) has been used as a case study in a large number of control studies. However, in terms of industrial application, this process has become obsolete and is nowadays superseded by new technologies capable of processing heavy aromatic compounds, which increase the added value of the raw materials, such as the process of transalkylation and disproportionation of toluene (TADP). TADP also presents more complex feed and product streams and challenging operational characteristics both in the reactor and separator sections than in HDA. This work is aimed at proposing the TADP process as a new benchmark for plantwide control studies in lieu of the HAD process. For this purpose, a nonlinear dynamic rigorous model for the TADP process was developed using Aspen Plus™ and Aspen Dynamics™ and industrial conditions. Plantwide control structures (oriented to control and to the process) were adapted and applied for the first time for this process. The results show that, even though both strategies are similar in terms of control performance, the optimization of economic factors must still be sought