z-logo
open-access-imgOpen Access
Classification of Non-Performing Financing Using Logistic Regression and Synthetic Minority Over-sampling Technique-Nominal Continuous (SMOTE-NC)
Publication year - 2021
Publication title -
international journal of advances in soft computing and its applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 18
eISSN - 2710-1274
pISSN - 2074-8523
DOI - 10.15849/ijasca.211128.09
Subject(s) - logistic regression , computer science , logistic model tree , regression , finance , econometrics , data mining , statistics , artificial intelligence , business , machine learning , mathematics
Financing analysis is the process of analyzing the ability of bank customers to pay installments to minimize the risk of a customer not paying installments, which is also called Non-Performing Financing (NPF). In 2020 the NPF ratio at one of the Islamic banks in Indonesia increased due to the decline in people’s income during the Covid-19 pandemic. This phenomenon has led to bad banking performance. In December 2020 the percentage of NPF was 17%. The imbalance between the number of good-financing and NPF customers has resulted in poor classification accuracy results. Therefore, this study classifies NPF customers using the Logistic Regression and Synthetic Minority Over-sampling Technique Nominal Continuous (SMOTE-NC) method. The results of this study indicate that the logistic regression with SMOTE-NC model is the best model for the classification of NPF customers compared to the logistic regression method without SMOTE-NC. The variables that have a significant effect are financing period, type of use, type of collateral, and occupation. The logistic regression with SMOTE-NC can handle the imbalanced dataset and increase the specificity when using logistic regression without SMOTE-NC from 0.04 to 0.21, with an accuracy of 0.81, sensitivity of 0.94, and precision of 0.86.Keywords: Classification, Islamic Bank, Logistic Regression, Non-Performing Financing, SMOTE-NC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here