Open Access
Comparative Analysis of the Genomic DNA Isolation Methods on <i>Inula</i> sp. (Asteraceae)
Author(s) -
Emre Sevindik,
Fatih Coşkun,
Zehra Tuğba Murathan,
Mehmet Yavuz Paksoy,
Veysel Uzun
Publication year - 2016
Publication title -
notulae scientia biologicae
Language(s) - English
Resource type - Journals
eISSN - 2067-3264
pISSN - 2067-3205
DOI - 10.15835/nsb849881
Subject(s) - isoamyl alcohol , genomic dna , dna , polymerase chain reaction , chromatography , biology , dna extraction , chemistry , microbiology and biotechnology , alcohol , genetics , gene , biochemistry
Simple, fast, low-cost and high throughput protocols are required for DNA isolation of plant species. In this study, phenol chloroform isoamyl alcohol and commercial (Sigma) DNA isolation kit methods were applied on some Inula species that belong to Asteraceae family. Genomic DNA amounts, A260, A280, A260/A230 and purity degrees (A260/A280) that were obtained through both methods were measured through electrophoresis and spectrophotometer. Additionally, PCR amplification was realized by primer pairs specific to nrDNA ITS, cpDNA ndhF (972F-1603R) and trnL-F regions. Results showed that maximum genomic DNA in nanograms obtained by phenol chloroform isoamyl alcohol method. The study also revealed that I. macrocephala had the maximum DNA and I. heterolepis had the minimum DNA amount. A260/A280 purity degrees showed that the highest and lowest purity in gDNAs obtained through phenol-choloform isoamyl alcohol method were in I.aucheriana and I. salicina, respectively. The highest and lowest purity degrees of gDNAs obtained through commercial kit was observed in I. fragilis and I. macrocephala samples, respectively. PCR amplification results showed that while band profiles of each three regions (ITS, trnL-F and ndhF) did not yield positive results in PCR amplifications using phenol-choloform isoamyl alcohol method; PCR band profiles obtained through commercial kit yielded positive results. As a result, it is fair to say that the relation of genomic DNA with PCR was found to be more efficient although the maximum amount of genomic DNA was obtained through phenol chloroform isoamyl alcohol method.