z-logo
open-access-imgOpen Access
Interactive effect of potassium and spermidine protects growth, photosynthesis and chlorophyll biosynthesis in Vigna angularis from salinity induced damage by up-regulating the tolerance mechanisms
Author(s) -
Amina A. M. Al-Mushhin
Publication year - 2022
Publication title -
notulae botanicae horti agrobotanici cluj-napoca
Language(s) - English
Resource type - Journals
eISSN - 1842-4309
pISSN - 0255-965X
DOI - 10.15835/nbha50112607
Subject(s) - osmolyte , salinity , chemistry , spermidine , antioxidant , glutathione , chlorophyll , photosynthesis , stomatal conductance , chlorophyll b , lipid peroxidation , ascorbic acid , biochemistry , food science , biology , enzyme , ecology , organic chemistry
Pot experiments were conducted to evaluate the role of potassium (100 mg KCl / kg soil) and the spermidine (100 µM Spd) in regulation of growth, chlorophyll synthesis and photosynthesis in Vigna angularis under salinity stress (100 mM NaCl). Salinity declined chlorophyll synthesis by causing a significant decline in the synthesis of δ-amino levulinic acid (ALA), prototoporphyrin IX (Proto IX) and Mg-prototoporphyrin IX (Mg-Proto IX), however application of K and Spd alone as well as combinedly alleviated the decline to considerable extent. Further, K and Spd treated plants exhibited a significant decline in reactive oxygen species and the lipid peroxidation and such effects were also obvious under salinity stress. Photosynthetic rate, stomatal conductance, intercellular CO2 concentration, Fv/Fm and photochemical quenching increased significantly due to K and Spd application, and salinity induced alleviation of the decline was maximal due to combined K and Spd treatment. Up-regulation of antioxidant enzymes activity, increased content of ascorbic acid and glutathione (GSH), and the accumulation of compatible osmolytes due to K and Spd application strengthened the tolerance against the salinity stress thereby lessening the oxidative effects considerably. Accumulation of phenols and flavonoids increased significantly due to application of K and Spd. Salinity caused significant increase in Na however K and Spd application induced a significant decline concomitant with increase in K content reflecting in decreased Na/K. Results suggest that K and Spd application protect the growth and photosynthesis from salinity induced oxidative damage by up-regulating the ion homeostasis, antioxidant system, osmolyte accumulation and secondary metabolite synthesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here