
The fundamental role of DELLA protein and regulatory mechanism during plant growth and development
Author(s) -
Ali Anwar,
Qianyu Zhao,
Huimin Zhang,
Shu Zhang,
Lilong He,
Fengde WANG,
Jianwei Gao
Publication year - 2021
Publication title -
notulae botanicae horti agrobotanici cluj-napoca
Language(s) - English
Resource type - Journals
eISSN - 1842-4309
pISSN - 0255-965X
DOI - 10.15835/nbha49412561
Subject(s) - brassinosteroid , abscisic acid , gibberellin , signal transduction , biology , plant growth , microbiology and biotechnology , mechanism (biology) , plant hormone , regulator , botany , biochemistry , arabidopsis , mutant , gene , philosophy , epistemology
Gibberellins (GAs) play a major role in a variety of key plant development processes, especially in promoting seed germination, stem and root growth, and fruit development. DELLA proteins are the core elements in GA signal transduction pathway, which exist in the plant nucleus and belong to the GRAS protein family. DELLA proteins negatively regulate the GA signaling pathway and biosynthesis, inhibiting plant growth. DELLA proteins can also interact with F-box, PIFS, ROS, SCLl3 and other proteins to enhance plant response to various adverse environmental influences such as drought, low and high temperature, heavy metal stresses. In addition, DELLA proteins can also partially regulate plant growth and development through interacting plant hormones such as ABA (abscisic acid), CK (cytokinin), ET (ethylene), BR (brassinosteroid) and JA (jasmine). This review summarized the basic characteristics of DELLA proteins, the transduction of hormone and environmental signals, as well as the regulation of plant growth and developments. DELLA proteins have broad application prospects in modern agricultural production in the future, but the molecular mechanism of DELLA proteins regulating plant growth and development are still unclear, and needs further study.