
Physiological and biochemical responses of argan (Argania spinosa (L.)) seedlings from containers of different depths under water stress
Author(s) -
Ouswati SAID ALI,
Abdouroihamane HACHEMI,
Aicha Moumni,
Tarik Belghazi,
A. Lahrouni,
S El Messoussi
Publication year - 2021
Publication title -
notulae botanicae horti agrobotanici cluj-napoca
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.332
H-Index - 32
eISSN - 1842-4309
pISSN - 0255-965X
DOI - 10.15835/nbha49412482
Subject(s) - horticulture , taproot , hydric soil , field capacity , malondialdehyde , chemistry , hydrogen peroxide , fibrous root system , botany , agronomy , environmental science , biology , soil water , irrigation , oxidative stress , soil science , biochemistry , organic chemistry
Plant species characteristic of arid and semi-arid zones, such as Argania spinosa (L.) Skeels, have a taproot that allows them to reach the soil horizons more quickly. Unfortunately, in the nursery, the containers of culture used for the production of seedlings do not support an excellent development of the root architecture that can be able to resist the shock of transplantation, in particular of the hydric stress. This study aimed to evaluate the physiological and biochemical behavior of Argania spinosa seedlings grown in containers of different depths under water stress. An experiment was conducted with 90 seedlings from the different containers (P1 for depth of 16 cm, P2 for depth of 30 cm, and P3 for depth of 60 cm), and three watering treatments (well-watered 100% of field capacity, moderate stress with 50% of field capacity and severe stress with 25% of the field capacity). Our results showed that seedlings from the 16 cm container had lower values of water status. Malondialdehyde content, electrolyte leakage, hydrogen peroxide, and superoxide radical content gave higher values on seedlings from the shallow container. The benefits of increasing the container depth of nursery seedlings contribute to the improvement of physiological and biochemical responses of seedlings under water stress. To fully validate our findings, a long-term field study must be conducted.