z-logo
open-access-imgOpen Access
SOME FEATURES OF GENOME STRUCTURE AND EVOLUTION OF MYCOBACTERIUM TUBERCULOSIS
Author(s) -
Igor Mokrousov
Publication year - 2014
Publication title -
infekciâ i immunitet
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 5
eISSN - 2313-7398
pISSN - 2220-7619
DOI - 10.15789/2220-7619-2011-3-211-220
Subject(s) - biology , genome , genetics , mycobacterium tuberculosis , tuberculosis , genome evolution , mycobacterium bovis , mycobacterium tuberculosis complex , insertion sequence , gene , transposable element , medicine , pathology
. Mycobacterium tuberculosis complex includes both human pathogens (M. tuberculosis, M. africanum and M. canettii), rodent paghogens (M. microti), as well as Mycobacterium bovis with wide range of hosts and related M. caprae and M. pinnipedii. In spite of phenotypic and host differences these species present a highly homogeneous genospecies with 99.7–99.9% of genome homology and extremely low level of horizontal gene transfer. Recent genetic research in the last decade permitted to revisit and revise old and new dogmas about genome and evolution of M. tuberculosis. In particular, a classical theory about bovine origin of human tuberculosis during domestication process was rejected. It was demonstrated that genomes of the related species of M. tuberculosis complex evolved through large unidirectional deletions leading to origin of M. tuberculosis sensu stricto, M. bovis and other species (M. canettii, M. microti, M. pinnipedii, M. caprae) from the same progenitor species. Large deletions influence the pathogenic potential of different clonal lineages within M. tuberculosis. At the same time, genetic variation within the short time frames is achieved via changes in the repetitive DNA and transposition of the insertion sequences IS6110 across the genome. Furthermore, M. tuberculosis may adapt to the selective pressure of the host immune system and antituberculosis drugs via specific point mutations. In the last few years a higher level of SNP variation between closely related strains was demonstrated with opens new perspectives for full-genome and multilocus sequence typing of M. tuberculosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here