z-logo
Premium
Influence of Rare Species on Electrofishing Distance When Estimating Species Richness of Stream and River Reaches
Author(s) -
Kanno Yoichiro,
Vokoun Jason C.,
Dauwalter Daniel C.,
Hughes Robert M.,
Herlihy Alan T.,
Maret Terry R.,
Patton Tim M.
Publication year - 2009
Publication title -
transactions of the american fisheries society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 86
eISSN - 1548-8659
pISSN - 0002-8487
DOI - 10.1577/t08-210.1
Subject(s) - electrofishing , species richness , rare species , sampling (signal processing) , abundance (ecology) , common species , habitat , ecology , species distribution , biology , physics , detector , optics
The electrofishing distance needed to estimate fish species richness at the stream or river reach scale is an important question in fisheries science. This distance is governed by the shape of the species accumulation curve, which, in turn, is influenced by a combination of factors, including the number of species, their overall abundances, habitat associations, the efficiency of the sampling method, and the occurrence of rare species. In this study we document the influence of rare species on the species accumulation curves from stream and river sites in data sets from five dispersed regions of the USA. Spatial discontinuity (i.e., a noncontinuous distribution within reaches) was observed in four of the five data sets, and the four data sets contained numerically rare species represented by one or two individuals (termed singletons and doubletons, respectively). Numerically rare species were typically proportionately rare (i.e., <1% of the total number of individuals captured), but proportionately rare species were not always numerically rare and were dependent on the total number of fish captured. Species richness asymptotes were reached at shorter electrofishing distances when singletons and doubletons were removed. The number of singletons and doubletons in the samples remained relatively constant with increasing sampling effort (i.e., sampling distance and total abundance). Simulation modeling indicated that individual aggregation within species was not a plausible reason for spatially discontinuous species distributions. When accurately detecting the presence of species is a sampling goal, the presence and prevalence of numerically rare species may need to be considered in determining sampling protocols.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here