Premium
Spatial Heterogeneity of Mercury Bioaccumulation by Walleye in Franklin D. Roosevelt Lake and the Upper Columbia River, Washington
Author(s) -
Munn Mark D.,
Short Terry M.
Publication year - 1997
Publication title -
transactions of the american fisheries society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.696
H-Index - 86
eISSN - 1548-8659
pISSN - 0002-8487
DOI - 10.1577/1548-8659(1997)126<0477:shombb>2.3.co;2
Subject(s) - mercury (programming language) , stizostedion , bioaccumulation , environmental science , fishery , environmental chemistry , zoology , biology , fish <actinopterygii> , chemistry , computer science , programming language
We examined mercury concentration in muscle of walleye Stizostedion vitreum from three reaches in Franklin D. Roosevelt Lake, a reservoir on the Columbia River, and from the upper Columbia River, an area contaminated by wastes from metal mining and associated processing activities. Our objectives were to describe the relation between size and age of walleyes and tissue concentrations of mercury and to compare mercury concentrations within a single reservoir system among spatially segregated cohorts. Overall, mercury concentrations in walleye muscle ranged from 0.11 to 0.44 mg/kg (wet weight) and were positively correlated with age, weight, and length of the fish. Mercury concentrations in walleyes varied spatially within the system; the highest concentrations were in fish from the lower and middle reaches of the reservoir. Condition factor of age‐2+ fish was inversely related to tissue concentration of mercury and was lower in fish from the lower and middle reaches than in fish from the upper reach. Spatial patterns in condition factor and mercury in walleyes were unrelated to concentrations of total mercury in surficial bed sediments, which ranged from less than 0.05 to 2.8 mg/kg (dry weight). We suggest that the observed spatial differences in the concentrations of mercury in walleyes may be attributed to the fish preferring to spawn and forage in specific areas where the bioavailability of mercury varies due to local differences in the physical and chemical environment.