Open Access
EXPERIMENTAL AND CLINICAL RATIONAL FOR TERAHERTZ THERAPY AT THE FREQUENCY OF MOLECULAR OXYGEN AND NITROGEN OXIDE ABSORPTION AND EMISSION IN DIFFERENT PATHOLOGIES
Author(s) -
Андрей Алексевич Свистунов,
Александр Александрович Цымбал,
Петр Францевич Литвицкий,
Иван Александович Будник
Publication year - 2017
Publication title -
vestnik rossijskoj akademii medicinskih nauk
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.122
H-Index - 15
eISSN - 2414-3545
pISSN - 0869-6047
DOI - 10.15690/vramn817
Subject(s) - terahertz radiation , electromagnetic radiation , nitric oxide , oscillation (cell signaling) , chemistry , medicine , materials science , optoelectronics , physics , biochemistry , optics
Most of the abiotic environmental factors are electromagnetic in nature. Electromagnetic radiation from various artificial sources exerts a significant inf luence on living systems. It poses a problem of targeted application of electromagnetic waves in health care, ever yday life, and industr y. Recently, a fundamentally new direction in medicine has emerged: the use of low-power terahertz electromagnetic waves at the frequency of oscillation of active cellular metabolites (nitrogen oxide, molecular oxygen, etc.) for disease treatment and prevention. It has been demonstrated that if there is a match in frequency bet ween the emitted electromagnetic wave and the natural oscillation of the molecule, absorption occurs and this alters the amplitude of the molecular oscillation and modifies involvement of the molecule in the metabolic process. This fact is of great interest for biomedical technologies because cellular metabolites may significantly affect regional circulation, microcirculation, and blood rheology; prevent intravascular coagulation; provide anti-inf lammator y and analgesic effects; limit excessive lipid peroxidation and potentiate the antioxidant mechanism; activate cellular anti-stress mechanisms. Today, terahertz electromagnetic radiation at the frequency of oscillation of nitric oxide, a universal cellular regulator y molecule, has been shown to be beneficial in the treatment of cardiovascular diseases, burns, polyneuropathy, regional pain syndrome, etc. This review summarizes clinical and experimental data on implementation of terahertz electromagnetic waves in medicine and presents our current understanding of the mechanisms of action of terahertz electromagnetic waves at the frequency of oscillation of active cellular metabolites on a living system at the molecular, cellular, tissue, and organ levels of organization.