
k-Yamabe and Quasi k-Yamabe Solitons on Imperfect Fluid Generalized Robertson –Walker Spacetime
Author(s) -
Mohd Danish Siddiqi,
Shah Siddiqi
Publication year - 2022
Publication title -
matematičeskaâ fizika i kompʹûternoe modelirovanie
Language(s) - English
Resource type - Journals
eISSN - 2587-6902
pISSN - 2587-6325
DOI - 10.15688/mpcm.jvolsu.2022.1.2
Subject(s) - mathematical physics , spacetime , vector field , yamabe flow , soliton , physics , mathematical analysis , mathematics , nonlinear system , scalar curvature , quantum mechanics , geometry , curvature , sectional curvature
In this research article, we estimate the behavior of an imperfect fluid generalized Robertson - Walker spacetime (GRW) in terms of k-Yamabe soliton with torseforming vector field. Besides this, we evaluate a specific situation when the potential vector filed ξ is of the form of gradient i.e, ξ = grad(Ψ), we extract a Laplace-Poisson equation, and Liouville equation from the quasi k-Yamabe soliton equation.