
COMPUTATION COMPLEXITY OF DEEP RELU NEURAL NETWORKS IN HIGH-DIMENSIONAL APPROXIMATION
Author(s) -
Dinh Dũng,
Van Kien Nguyen,
Mai Xuan Thao
Publication year - 2021
Publication title -
journal of computer science and cybernetics (vietnam academy of science and technology)/journal of computer science and cybernetics
Language(s) - English
Resource type - Journals
eISSN - 2815-5939
pISSN - 1813-9663
DOI - 10.15625/1813-9663/37/3/15902
Subject(s) - unit cube , computation , artificial neural network , smoothness , context (archaeology) , dimension (graph theory) , cube (algebra) , deep neural networks , mathematics , algorithm , computer science , combinatorics , topology (electrical circuits) , discrete mathematics , artificial intelligence , mathematical analysis , paleontology , biology
The purpose of the present paper is to study the computation complexity of deep ReLU neural networks to approximate functions in H\"older-Nikol'skii spaces of mixed smoothness $H_\infty^\alpha(\mathbb{I}^d)$ on the unit cube $\mathbb{I}^d:=[0,1]^d$. In this context, for any function $f\in H_\infty^\alpha(\mathbb{I}^d)$, we explicitly construct nonadaptive and adaptive deep ReLU neural networks having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, and prove dimension-dependent bounds for the computation complexity of this approximation, characterized by the size and the depth of this deep ReLU neural network, explicitly in $d$ and $\varepsilon$. Our results show the advantage of the adaptive method of approximation by deep ReLU neural networks over nonadaptive one.