z-logo
open-access-imgOpen Access
New Method for Optimal Feature Set Reduction
Author(s) -
Oleg Witoldovich German,
Sara Nabih Nasrh
Publication year - 2020
Publication title -
informatika i avtomatizaciâ/informatika i avtomatizaciâ (print)
Language(s) - English
Resource type - Journals
eISSN - 2713-3206
pISSN - 2713-3192
DOI - 10.15622/ia.2020.19.6.3
Subject(s) - feature (linguistics) , mathematics , reduction (mathematics) , set (abstract data type) , matrix (chemical analysis) , algorithm , pattern recognition (psychology) , mathematical optimization , computer science , artificial intelligence , philosophy , linguistics , materials science , geometry , composite material , programming language
A problem of searching a minimum-size feature set to use in distribution of multidimensional objects in classes, for instance with the help of classifying trees, is considered. It has an important value in developing high speed and accuracy classifying systems. A short comparative review of existing approaches is given. Formally, the problem is formulated as finding a minimum-size (minimum weighted sum) covering set of discriminating 0,1-matrix, which is used to represent capabilities of the features to distinguish between each pair of objects belonging to different classes. There is given a way to build a discriminating 0,1-matrix. On the basis of the common solving principle, called the group resolution principle, the following problems are formulated and solved: finding an exact minimum-size feature set; finding a feature set with minimum total weight among all the minimum-size feature sets (the feature weights may be defined by the known methods, e.g. the RELIEF method and its modifications); finding an optimal feature set with respect to fuzzy data and discriminating matrix elements belonging to diapason [0,1]; finding statistically optimal solution especially in the case of big data. Statistically optimal algorithm makes it possible to restrict computational time by a polynomial of the problem sizes and density of units in discriminating matrix and provides a probability of finding an exact solution close to 1. Thus, the paper suggests a common approach to finding a minimum-size feature set with peculiarities in problem formulation, which differs it from the known approaches. The paper contains a lot of illustrations for clarification aims. Some theoretical statements given in the paper are based on the previously published works. In the concluding part, the results of the experiments are presented, as well as the information on dimensionality reduction for the coverage problem for big datasets. Some promising directions of the outlined approach are noted, including working with incomplete and categorical data, integrating the control model into the data classification system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here