
Methodology for Ensuring a Comfortable Microclimate State in a Smart Home Using an Ensemble of Fuzzy Artificial Neural Networks
Author(s) -
Andrey Mozohin
Publication year - 2021
Publication title -
informatika i avtomatizaciâ/informatika i avtomatizaciâ (print)
Language(s) - English
Resource type - Journals
eISSN - 2713-3206
pISSN - 2713-3192
DOI - 10.15622/ia.20.6.9
Subject(s) - home automation , artificial neural network , computer science , air conditioning , cyber physical system , hybrid system , energy consumption , fuzzy logic , building automation , controllability , simulation , control engineering , artificial intelligence , engineering , telecommunications , machine learning , electrical engineering , mechanical engineering , physics , thermodynamics , operating system , mathematics
Analysis of the application of smart home technology indicates an insufficient level of controllability of its infrastructure, which leads to excessive consumption of energy and information resources. The problem of managing the digital infrastructure of human living space, is associated with a large number of highly specialized solutions for home automation, which complicate the management process. Smart home is considered as a set of independent cyber-physical devices aimed at achieving its goal. For coordinated work of cyber-physical devices it is proposed to provide their joint work through a single information center. Simulation of device operation modes in a digital environment preserves the resource of physical devices by making a virtual calculation for all possible variants of interaction of devices between themselves and the physical environment. A methodology for controlling the microclimate of a smart home using an ensemble of fuzzy artificial neural networks is developed, with the example of joint use of air conditioning, ventilation and heating. The neural network algorithm allows you to monitor the parameters of the physical environment, predict the modes of cyber-physical devices and generate control signals for each of them, ensuring the joint operation of devices with minimal resource consumption and information traffic. A variant of practical implementation of a smart home climate control system on the example of a multifunctional educational computer class is proposed. Hybrid neural networks of air conditioning, ventilation and heating systems were developed. The testing of the microclimate control system of a multifunctional university classroom using hybrid neural networks was carried out, a programmable logic controller of domestic production was used as a control device. The goal of management based on cooperating cyber-physical devices is to achieve a minimum of power and information traffic when they work together.