
Underwater Robot Manipulator Control
Author(s) -
Alexey Balabanov,
Anna Bezuglaya,
Evgeny Andreevich Shushlyapin
Publication year - 2021
Publication title -
informatika i avtomatizaciâ/informatika i avtomatizaciâ (print)
Language(s) - English
Resource type - Journals
eISSN - 2713-3206
pISSN - 2713-3192
DOI - 10.15622/ia.20.6.5
Subject(s) - control theory (sociology) , nonlinear system , position (finance) , kinematics , rotation (mathematics) , terminal (telecommunication) , basis (linear algebra) , robot end effector , computer science , engineering , mathematics , robot , artificial intelligence , control (management) , physics , telecommunications , geometry , finance , classical mechanics , quantum mechanics , economics
This paper deals with the problem of bringing the end effector (grip center) of an underwater vehicle anthropomorphic manipulator to a predetermined position in a given time using the terminal state method. A dynamic model with the account of joint drives dynamics is formulated on the basis of obtained kinematic model constructed by using the Denavit-Hartenberg method (DH model). The DH model is used in a terminal nonlinear criterion that displays estimate of the proximity of the effector's orientation and position to the specified values. The dynamic model is adapted for effective application of the author's terminal state method (TSM) so that it forms a system of differential equations for the rotation angles of manipulator links around the longitudinal and transverse axes, having only desired TSM-controls in the right parts. The converted model provides simplifications of controls calculation by eliminating the numerical solution of special differential equations, that is needed in the case of using in TSM nonlinear dynamic models in general form. The found TSM-controls are further used in expressions for control actions on joints electric drives obtained on the basis of electric drives dynamic models. Unknown drives parameters as functions of links rotation angles or other unknown factors, are proposed to be determined experimentally. Such two-step procedure allowed to get drive control in the form of algebraic and transcendental expressions. Finally, by applying the developed software, simulation results of the manipulator end effector moving to the specified positions on the edge of the working area are presented. The resulting error (without accounting measurement error) does not exceed 2 centimeters at the 1.2 meters distance by arm reaching maximum of length ability. The work was performed under the Federal program of developing a robotic device for underwater research in shallow depths (up to 10 meters).