z-logo
open-access-imgOpen Access
Analytical study of the natural bending oscillations of a concave beam with parabolic change in thickness
Author(s) -
Kirill Trapezon,
А. Г. Трапезон
Publication year - 2021
Publication title -
eastern-european journal of enterprise technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.268
H-Index - 24
eISSN - 1729-4061
pISSN - 1729-3774
DOI - 10.15587/1729-4061.2021.230820
Subject(s) - deflection (physics) , rigidity (electromagnetism) , regular polygon , mathematics , beam (structure) , flexural rigidity , mathematical analysis , parabola , mechanics , physics , classical mechanics , geometry , optics , thermodynamics , quantum mechanics
The synthesis of factorization and symmetry methods produced a general analytical solution to the fourth-order differential equation with variable coefficients. The form and structure of the variable coefficients correspond, in this case, to the problem of the oscillations of a concave beam of variable thickness. The solution to this equation makes it possible to study in detail the oscillations of such and similar, for example convex, beams at the different fixation of their ends' sections. A practical confirmation has been obtained that the beam whose thickness changes in line with the concave parabola law H=a2x2+1, where a is the concave factor, demonstrates an increase in the natural frequencies of its free oscillations with an increase in its rigidity. As an example, the object's maximum deflection dependence on the beam rigidity factor has been established. The nature of this dependence confirmed the obvious conclusion that the deflections had decreased while the rigidity had increased. The evidence from the calculation results can be a testament to the correctness of the reported procedure of problem-solving.The considered problem and the analytical solution to it could serve as a practical guide to the optimal design of beam structures. In this case, it is very important to take into consideration the place and nature of the distribution of cyclical extreme operating stresses. The resulting ratios to solve the problem make it possible to simulate the required normal stresses in both the fixation and central zones when the rigidity parameter is changed. Designers could predict such a parabolic profile of the beam, which would ensure the required reduction of maximum stresses in the place of fixing the beam. The considered example of solving the problem of the natural oscillations of the beam with rigid fixation of the ends illustrates the effectiveness of the factoring and symmetry methods used. The developed solution algorithm could be extended to study the natural bending oscillations of the beam at other fixing techniques, not excluding a variant of a completely free beam

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here