An introduction to thin film processing using high-power impulse magnetron sputtering
Author(s) -
Daniel Lundin,
K. Sarakinos
Publication year - 2012
Publication title -
journal of materials research/pratt's guide to venture capital sources
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.788
H-Index - 148
eISSN - 0884-2914
pISSN - 0884-1616
DOI - 10.1557/jmr.2012.8
Subject(s) - high power impulse magnetron sputtering , materials science , sputter deposition , thin film , impulse (physics) , cavity magnetron , sputtering , optoelectronics , engineering physics , nanotechnology , engineering , physics , quantum mechanics
High-power impulse magnetron sputtering (HiPIMS) is a promising sputtering-based ionized physical vapor deposition technique and is already making its way to industrial applications. The major difference between HiPIMS and conventional magnetron sputtering processes is the mode of operation. In HiPIMS the power is applied to the magnetron (target) in unipolar pulses at a low duty factor (andlt;10%) and low frequency (andlt;10 kHz) leading to peak target power densities of the order of several kilowatts per square centimeter while keeping the average target power density low enough to avoid magnetron overheating and target melting. These conditions result in the generation of a highly dense plasma discharge, where a large fraction of the sputtered material is ionized and thereby providing new and added means for the synthesis of tailor-made thin films. In this review, the features distinguishing HiPIMS from other deposition methods will be addressed in detail along with how they influence the deposition conditions, such as the plasma parameters and the sputtered material, as well as the resulting thin film properties, such as microstructure, phase formation, and chemical composition. General trends will be established in conjunction to industrially relevant material systems to present this emerging technology to the interested reader.Funding Agencies|Swedish Research Council (VR)|623-2009-7348
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom