z-logo
open-access-imgOpen Access
Vitreous Materials for Nuclear Waste Immobilisation and IAEA Support Activities
Author(s) -
Rebecca A. Robbins,
Michael I. Ojovan
Publication year - 2016
Publication title -
mrs advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.253
H-Index - 15
eISSN - 2731-5894
pISSN - 2059-8521
DOI - 10.1557/adv.2017.209
Subject(s) - vitrification , radioactive waste , high level waste , waste management , spent nuclear fuel , durability , borosilicate glass , materials science , nuclear fuel , waste treatment , environmental science , nuclear engineering , metallurgy , engineering , composite material , medicine , andrology
Vitreous materials are the overwhelming world-wide choice for the immobilisation of HLW resulting from nuclear fuel reprocessing due to glass tolerance for the chemical elements found in the waste as well as its inherent stability and durability. Vitrification is a mature technology and has been used for high-level nuclear waste immobilization for more than 50 years. Borosilicate glass is the formulation of choice in most applications although other formulations are also used e.g. phosphate glasses are used to immobilize high level wastes in Russia. The excellent durability of vitrified radioactive waste ensures a high degree of environment protection. Waste vitrification gives high waste volume reduction along with simple and cheap disposal facilities. Although vitrification requires a high initial investment and then operational costs, the overall cost of vitrified radioactive waste is usually lower than alternative options when account is taken of transportation and disposal expenses. Glass has proven to be also a suitable matrix for intermediate and low-level radioactive wastes and is currently used to treat legacy waste in USA, and NPP operational waste in Russia and South Korea. This report is also outlining IAEA activities aiming to support utilisation of vitreous materials for nuclear waste immobilisation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom