z-logo
open-access-imgOpen Access
Endomorphisms and anti-endomorphisms of some finite groupoids
Author(s) -
A. V. Litavrin
Publication year - 2022
Publication title -
žurnal srednevolžskogo matematičeskogo obŝestva
Language(s) - English
Resource type - Journals
eISSN - 2587-7496
pISSN - 2079-6900
DOI - 10.15507/2079-6900.24.202201.76-95
Subject(s) - endomorphism , monoid , mathematics , element (criminal law) , automorphism , pure mathematics , free monoid , set (abstract data type) , double groupoid , algebra over a field , computer science , political science , law , programming language
In this paper, we study anti-endomorphisms of some finite groupoids. Previously, special groupoids S(k,q) of order k(1+k) with a generating set of k elements were introduced. Previously, the element-by-element description of the monoid of all endomorphisms (in particular, automorphisms) of a given groupoid was studied. It was shown that every finite monoid is isomorphically embeddable in the monoid of all endomorphisms of a suitable groupoid S(k,q). In recent article, we give an element-by-element description for the set of all anti-endomorphisms of the groupoid S(k,q). We establish that, depending on the groupoid S(k,q), the set of all its anti-endomorphisms may be closed or not closed under the composition of mappings. For an element-by-element description of anti-endomorphisms, we study the action of an arbitrary anti-endomorphism on generating elements of a groupoid. With this approach, the anti-endomorphism will fall into one of three classes. Anti-endomorphisms from the two classes obtained will be endomorphisms of given groupoid. The remaining class of anti-endomorphisms, depending on the particular groupoid S(k,q), may either consist or not consist of endomorphisms. In this paper, we study endomorphisms of some finite groupoids G whose order satisfies some inequality. We construct some endomorphisms of such groupoids and show that every finite monoid is isomorphically embedded in the monoid of all endomorphisms of a suitable groupoid G. To prove this result, we essentially use a generalization of Cayley's theorem to the case of monoids (semigroups with identity).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here