z-logo
open-access-imgOpen Access
Some conditions of convergence of interpolative Lagrange processes on $A_R$ and $\mathbb{C}^{\infty}$ classes
Author(s) -
Oleg Davydov
Publication year - 1987
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/248704
Subject(s) - combinatorics , differentiable function , mathematics , lambda , lebesgue integration , matrix (chemical analysis) , physics , mathematical analysis , quantum mechanics , materials science , composite material
Let $X = \{ -1 \leqslant x_{0n} 1$. Let$$R_0(X) = \inf \bigl\{ R > 1\colon \forall f \in A_R \lim\limits_{n \rightarrow \infty} \| f - L_n(X, f) \| = 0 \bigr\}$$Theorem 1. Let the nodes of the matrix $X$ satisfy the condition $| \theta_{in} - \theta_{i-1,n}| \geqslant \frac{\varepsilon \pi}{n}$, $i = \overline{1, n}$, where $\theta_{in} = \arccos x_{in}$, $n = 1, 2, \ldots$, $0 < \varepsilon \leqslant 1$. Then the following inequality holds:$$\bigl( \lim\limits_{n \rightarrow \infty} \sqrt[n]{\lambda_n(X)} \bigr)^{\varepsilon} \leqslant R_0(X) \leqslant \lim\limits_{n \rightarrow \infty} \sqrt[n]{\lambda_n(X)}$$Analogous results take place for the classes $A_R$ of all regular and infinitely differentiable on $\mathbb{C}^{\infty}$ functions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom