z-logo
open-access-imgOpen Access
To the question of approximation of continuous periodic functions by trigonometric polynomials
Author(s) -
V. V. Shalaev
Publication year - 2021
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/247711
Subject(s) - combinatorics , degree (music) , omega , mathematics , smoothness , bounded function , quintic function , modulus of continuity , physics , mathematical analysis , type (biology) , quantum mechanics , ecology , nonlinear system , acoustics , biology
In the paper, it is proved that$$1 - \frac{1}{2n} \leqslant \sup\limits_{\substack{f \in C\\f \ne const}} \frac{E_n(f)_C}{\omega_2(f; \pi/n)_C} \leqslant \inf\limits_{L_n \in Z_n(C)} \sup\limits_{\substack{f \in C\\f \ne const}} \frac{\| f - L_n(f) \|_C}{\omega_2 (f; \pi/n)_C} \leqslant 1$$where $\omega_2(f; t)_C$ is the modulus of smoothness of the function $f \in C$, $E_n(f)_C$ is the best approximation by trigonometric polynomials of the degree not greater than $n-1$ in uniform metric, $Z_n(C)$ is the set of linear bounded operators that map $C$ to the subspace of trigonometric polynomials of degree not greater than $n-1$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom