z-logo
open-access-imgOpen Access
Criterion of the best non-symmetric approximant for multivariable functions in space $L_{1, p_2,...,p_n}$
Author(s) -
M.Ye. Tkachenko,
V.M. Traktynska
Publication year - 2021
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/242109
Subject(s) - combinatorics , physics , polynomial , space (punctuation) , mathematics , mathematical analysis , philosophy , linguistics
The criterion of the best non-symmetric approximant for $n$-variable functions in the space $L_{1, p_2,...,p_n}$ $(1<p_i<+\infty , i=2,3,...,n)$ with $(\alpha ,\beta )$-norm$$\|f\|_{1,p_2,...,p_n;\alpha,\beta}=\left[\int\limits_{a_n}^{b_n}\cdots\left[\int\limits_{a_2}^{b_2}\left[\int\limits_{a_1}^{b_1} |f(x)|_{\alpha,\beta} dx_1\right]^{p_2} dx_2\right]^{\frac{p_3}{p_2}}\cdots dx_n\right]^{\frac{1}{p_n}},$$where $0<\alpha,\beta<\infty$, $\ f_{+}(x)=\max\{f(x),0\},\ f_{-}(x)=\max\{-f(x),0\},$ $\mathrm{sgn}_{\alpha,\beta}f(x)=\alpha\cdot\mathrm{sgn}f_{+}(x)-\beta\cdot\mathrm{sgn}f_{-}(x),$ $|f|_{\alpha,\beta}=\alpha \cdot f_{+}+\beta \cdot f_{-} =f(x)\cdot \mathrm{sgn}_{\alpha,\beta}f(x)$, is obtained in the article.It is proved that if $P_m=\sum\limits_{k=1}^{m}c_k\varphi_k$, where  $\{\varphi_k\}_{k=1}^m$ is a linearly independent system functions of $L_{1,p_2,...,p_n}$, $c_k$ are real numbers, then the polynomial $P_m^{\ast}$ is the best $(\alpha ,\beta )$-approximant for $f$ in the space $L_{1,p_2,...,p_n}$ $(1<p_i<\infty $, $i=2,3,...,n)$, if and only if, for any polynomial $P_m$$$\int \limits_K P_m\cdot F_0^{\ast}dx \leq \int \limits_{a_n}^{b_n}...\int \limits_{a_2}^{b_2}\int \limits_{e_{x_2,...,x_n}}|P_m|_{\beta , \alpha}dx_1 \cdot \operatorname *{ess \,sup}_ {x_1 \in [a_1,b_1]} |F_0^{\ast}|_{\frac{1}{\alpha },\frac{1}{\beta }} dx_2...dx_n,$$where $K=[a_1,b_1]\times \ldots\times [a_n,b_n],$ $e_{x_2,...,x_n}=\{ x_1\in [a_1,b_1] : f-P_m^{\ast}=0\},$$$F_0^{\ast}=\frac{|R_m^{\ast}|_{1; \alpha ,\beta }^{p_2-1}|R_m^{\ast}|_{1,p_2; \alpha ,\beta }^{p_3-p_2}\cdot ... \cdot |R_m^{\ast}|_{1,p_2,...,p_{n-1}; \alpha ,\beta }^{p_n-p_{n-1}}\mathrm{sgn}_{\alpha ,\beta} R_m^{\ast}}{||R_m^{\ast}||_{1,p_2,...,p_n; \alpha ,\beta}^{p_n-1}},$$|f|_{p_k,\ldots,p_i;\alpha,\beta}=\left[\int\limits_{a_i}^{b_i}\ldots\left[ \int\limits_{a_{k+1}}^{b_{k+1}}\left[\int\limits_{a_k}^{b_k}|f|_{\alpha,\beta}^{p_k}dx_k\right]^{\frac{p_{k+1}}{p_k}}dx_{k+1} \right]^{\frac{p_{k+2}}{p_{k+1}}}\ldots dx_i \right]^{\frac{1}{p_i}},$$($1\leq k<i\leq n$), $R_m^{\ast}=f-P_m^{\ast}$.This criterion is a generalization of the known Smirnov's criterion for functions of two variables, when $\alpha =\beta =1$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom