z-logo
open-access-imgOpen Access
Sharp inequalities of various metrics on the classes of functions with given comparison function
Author(s) -
T.V. Alexandrova,
В. А. Кофанов
Publication year - 2021
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/242102
Subject(s) - omega , mathematics , quotient , combinatorics , sobolev space , trigonometric polynomial , polynomial , trigonometric functions , function (biology) , mathematical analysis , trigonometry , physics , geometry , quantum mechanics , evolutionary biology , biology
For any $q > p > 0$, $\omega > 0,$ $d \ge 2 \omega,$  we obtain the following sharp inequality of various metrics$$\|x\|_{L_q(I_{d})} \le \frac{\|\varphi +c\|_{L_q(I_{2\omega})}}{\|\varphi + c \|_{L_p(I_{2\omega})}}\|x\|_{L_p(I_{d})}$$on the set $S_{\varphi}(\omega)$ of $d$-periodic functions $x$ having zeros with given the sine-shaped $2\omega$-periodic comparison function $\varphi$, where $c\in [-\|\varphi\|_\infty, \|\varphi\|_\infty]$ is such that$$\|x_{\pm}\|_{L_p(I_{d})} = \|(\varphi +c)_{\pm}\|_{L_p(I_{2\omega})}\,.$$In particular, we  obtain such type inequalities on the Sobolev sets of periodic functions and on the spaces of trigonometric polynomials and polynomial splines with given quotient of the norms $\|x_{+}\|_{L_p(I_{d})} / \|x_-\|_{L_p(I_{d})}$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom