z-logo
open-access-imgOpen Access
Extremal problems for non-periodic splines on real domain and their derivatives
Author(s) -
K.A. Danchenko,
В. А. Кофанов
Publication year - 2019
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/241903
Subject(s) - combinatorics , order (exchange) , mathematics , domain (mathematical analysis) , lambda , physics , mathematical analysis , quantum mechanics , finance , economics
We consider the Bojanov-Naidenov problem over the set $\sigma_{h,r}$ of all non-periodic splines $s$ of order $r$ and minimal defect with knots at the points $kh$, $k \in \mathbb{Z}$. More exactly, for given $n, r \in \mathbb{N}$; $p, A > 0$ and any fixed interval $[a, b] \subset \mathbb{R}$ we solve the following extremal problem $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q \geqslant p$, over the classes $\sigma_{h,r}^p(A) := \bigl\{ s(\cdot + \tau) \colon s \in \sigma_{h,r}, \| s \|_{p, \delta} \leqslant A \| \varphi_{\lambda, r} \|_{p, \delta}, \delta \in (0, h], \tau \in \mathbb{R} \bigr\}$, where $\| x \|_{p, \delta} := \sup \bigl\{ \| x \|_{L_p[a,b]} \colon a, b \in \mathbb{R}, 0 0, t \in (a, b) \bigr\}$. We prove that the classes $\sigma_{h,r}^p (A)$ are wider than the classes $\sigma_{h,r}(A,p)$. Similarly we solve the analog of Erdös problem about the characterisation of the spline $s \in \sigma_{h,r}^p(A)$ that has maximal arc length over fixed interval $[a, b] \subset \mathbb{R}$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom