z-logo
open-access-imgOpen Access
Inequalities of various metrics for the norms $$$\|x\|_{p,\delta} = \sup \bigl\{ \| x \|_{L_p[a,b]} \colon a,b\in \mathbb{R}, b-a\leqslant \delta \bigr\}$$$ of differentiable functions on the real domain
Author(s) -
В. А. Кофанов
Publication year - 2018
Publication title -
dnipro university mathematics bulletin
Language(s) - English
Resource type - Journals
eISSN - 2518-7996
pISSN - 2312-9557
DOI - 10.15421/241806
Subject(s) - differentiable function , trigonometry , mathematics , trigonometric functions , real line , delta , pure mathematics , trigonometric polynomial , line (geometry) , combinatorics , discrete mathematics , mathematical analysis , physics , geometry , astronomy
We prove sharp inequalities of various metrics for the norms $$$\| x \|_{p, \delta}$$$ of differentiable functions defined on the real line, trigonometric polynomials and periodic splines.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom