z-logo
open-access-imgOpen Access
Bojanov-Naidenov problem for positive (negative) parts of differentiable functions on the real domain
Author(s) -
V.V. Kameneva,
В. А. Кофанов
Publication year - 2018
Publication title -
dnipro university mathematics bulletin
Language(s) - English
Resource type - Journals
eISSN - 2518-7996
pISSN - 2312-9557
DOI - 10.15421/241804
Subject(s) - differentiable function , measure (data warehouse) , domain (mathematical analysis) , combinatorics , mathematics , norm (philosophy) , function (biology) , set (abstract data type) , discrete mathematics , pure mathematics , mathematical analysis , computer science , data mining , philosophy , epistemology , evolutionary biology , biology , programming language
We solve the extremal problem $$$\| x^{(k)}_{\pm} \|_{L_p[a,b]} \rightarrow \sup$$$, $$$k = 0, 1, ..., r-1$$$, over the set of pairs $$$(x, I)$$$ of functions $$$x\in W^r_{\infty} (\mathbb{R})$$$ and intervals $$$I = [a,b]$$$ with restrictions on the local norm of function $$$x$$$ and the measure of support $$$\mu \{ \mathrm{supp}_{[a,b]} x^{(k)}_{\pm} \}$$$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom