z-logo
open-access-imgOpen Access
Solution of Bojanov-Naidenov problem with constraints for the norm $\|x\|_{p,\delta} = \sup \bigl\{ \| x \|_{L_p[a;b]} \colon a,b\in \mathbb{R}, b-a\leqslant \delta \bigr\}$
Author(s) -
В. А. Кофанов
Publication year - 2017
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/241705
Subject(s) - lambda , combinatorics , physics , mathematics , quantum mechanics
For given $r\in \mathbb{N}$; $p,\lambda > 0$ and fixed interval $[a;b] \subset \mathbb{R}$ we solve the extremal problems 1) $\int\limits_a^b |x(t)|^q dt \rightarrow \sup$, $q > p$, 2) $\int\limits_a^b |x^{(k)}(t)|^q dt \rightarrow \sup$, $q \geqslant 1$, $k\in \mathbb{N}$, $k < r$, on the set of functions $f\in L^r_{\infty}$ such that $\|x^{(r)}\|_{\infty} \leqslant 1$, $\|x\|_{p,\delta} \leqslant \| \varphi_{\lambda,r} \|_{p,\delta}$, $\delta \in (0,\pi / \lambda)$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom