On $L^1$-Matrices with Degenerate Spectrum and Weak Convergence in Associated Weighted Sobolev Spaces
Author(s) -
Peter I. Kogut,
T.N. Rudyanova
Publication year - 2012
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/241219
Subject(s) - omega , sobolev space , mathematics , standard probability space , eigenvalues and eigenvectors , degenerate energy levels , lebesgue measure , combinatorics , spectrum (functional analysis) , lebesgue integration , compact space , measure (data warehouse) , lp space , pure mathematics , physics , banach space , quantum mechanics , database , computer science
We study the compactness property of the weak convergence in variable Sobolev spaces of the following sequences $\left\{ (A_n,u_n) \in L^1(\Omega; {\mathbb{R}}^{N\times N}) \times W_{A_n}(\Omega; {\Gamma}_D) \right\}$, where the squared symmetric matrices $A\colon \Omega \rightarrow {\mathbb{R}}^{N\times N}$ belong to the Lebesgue space $L^1(\Omega; {\mathbb{R}}^{N\times N})$ and their eigenvalues may vanish on subdomains of $\Omega$ with zero Lebesgue measure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom