z-logo
open-access-imgOpen Access
On $L^1$-Matrices with Degenerate Spectrum and Weak Convergence in Associated Weighted Sobolev Spaces
Author(s) -
Peter I. Kogut,
T.N. Rudyanova
Publication year - 2012
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/241219
Subject(s) - omega , sobolev space , mathematics , standard probability space , eigenvalues and eigenvectors , degenerate energy levels , lebesgue measure , combinatorics , spectrum (functional analysis) , lebesgue integration , compact space , measure (data warehouse) , lp space , pure mathematics , physics , banach space , quantum mechanics , database , computer science
We study the compactness property of the weak convergence in variable Sobolev spaces of the following sequences $\left\{ (A_n,u_n) \in L^1(\Omega; {\mathbb{R}}^{N\times N}) \times W_{A_n}(\Omega; {\Gamma}_D) \right\}$, where the squared symmetric matrices $A\colon \Omega \rightarrow {\mathbb{R}}^{N\times N}$ belong to the Lebesgue space $L^1(\Omega; {\mathbb{R}}^{N\times N})$ and their eigenvalues may vanish on subdomains of $\Omega$ with zero Lebesgue measure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom