
On the weakly-* dense subsets in $L^{\infty}(\Omega)$
Author(s) -
Peter I. Kogut,
T.N. Rudyanova
Publication year - 2021
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/240818
Subject(s) - omega , convergence (economics) , mathematics , property (philosophy) , space (punctuation) , set (abstract data type) , variable (mathematics) , pure mathematics , combinatorics , mathematical analysis , physics , computer science , quantum mechanics , philosophy , epistemology , economics , programming language , economic growth , operating system
In this paper we study the density property of the compactly supported smooth functions in the space $L^{\infty}(\Omega)$. We show that this set is dense with respect to the weak-* convergence in variable spaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom