On boundedness of operators of weak type $(\varphi_0, \psi_0, \varphi_1, \psi_1)$ in Lorentz spaces in limit cases
Author(s) -
B.I. Peleshenko
Publication year - 2021
Publication title -
researches in mathematics
Language(s) - English
Resource type - Journals
eISSN - 2664-5009
pISSN - 2664-4991
DOI - 10.15421/240716
Subject(s) - lorentz transformation , limit (mathematics) , infinity , lorentz space , mathematics , type (biology) , space (punctuation) , zero (linguistics) , lambda , mathematical physics , combinatorics , pure mathematics , mathematical analysis , physics , quantum mechanics , philosophy , ecology , linguistics , biology
We prove theorems on boundedness of operators of weak type $(\varphi_0, \psi_0, \varphi_1, \psi_1)$ from Lorentz space $\Lambda_{\varphi,a}(\mathbb{R}^n)$ to $\Lambda_{\varphi,b}(\mathbb{R}^n)$ in “limit” cases, when one of functions $\varphi(t) / \varphi_0(t)$, $\varphi(t) / \varphi_1(t)$ slowly changes at zero and at infinity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom