z-logo
open-access-imgOpen Access
Generalized Exterior Algebras
Author(s) -
Н. Г. Марчук
Publication year - 2012
Publication title -
ukrainian journal of physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.213
H-Index - 17
eISSN - 2071-0194
pISSN - 2071-0186
DOI - 10.15407/ujpe57.4.422
Subject(s) - clifford algebra , exterior algebra , algebra over a field , mathematics , formalism (music) , metric (unit) , geometric algebra , algebra representation , pure mathematics , differential form , art , musical , operations management , economics , visual arts
Exterior algebras and differential forms are widely used in many fields of modern mathematics and theoretical physics. In this work, we define a notion of N-metric exterior algebra, which depends on N matrices of structure constants. The usual exterior algebra (Grassmann algebra) can be considered as a 0-metric exterior algebra. The Clifford algebra can be considered as a 1-metric exterior algebra. N-metric exterior algebras for N ≥ 2 can be considered as generalizations of the Grassmann and Clifford algebras. Specialists consider models of gravity that are based on a mathematical formalism with two metric tensors. We hope that the 2-metric exterior algebra considered in this work can be useful for the development of this model in gravitation theory and,especially, in the description of fermions in the presence of a gravity field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom