
Simulation analysis to optimize the performance of homojunction p-i-n In0.7Ga0.3N solar cell
Author(s) -
Shujaat Hussain,
Md. T. Prodhan,
Md. Mostafi zur Rahman
Publication year - 2021
Publication title -
semiconductor physics, quantum electronics and optoelectronics/semiconductor physics quantum electronics and optoelectronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.185
H-Index - 2
eISSN - 1605-6582
pISSN - 1560-8034
DOI - 10.15407/spqeo24.02.192
Subject(s) - homojunction , solar cell , materials science , layer (electronics) , doping , open circuit voltage , energy conversion efficiency , optoelectronics , current density , short circuit , solar cell efficiency , voltage , composite material , electrical engineering , physics , quantum mechanics , engineering
Simulation analysis has been carried out to determine the perfect structural parameters of homojunction p-i-n In0.7Ga0.3N solar cell to obtain maximum overall efficiency. It has been demonstrated that n-layer of 16-nm, intrinsic layer (i-layer) of 0.5-μm and p-layer of 3-μm thickness with specific doping concentrations of 1·1020 cm–3 for n-layer and 1·1018 cm–3 for p-layer allow us to achieve the maximum efficiency 29.21%. The solar cell structure provides an open circuit voltage of 1.0 V, short circuit current density of 33.15 mA/cm2 and the percentage of fill factor value of 88.03%. However, the efficiency drops drastically, if the dislocation density in i-layer is higher than 1·1014 cm–3, and unintentional doping concentration within i-layer is beyond 1.5·1016 cm–3 of the structure.