
Creation of bilateral structures of macroporous silicon with nanocoatings for solar cells
Author(s) -
Л. А. Карачевцева,
M. T. Кartel,
Bo Wang,
O. O. Lytvynenko,
M. I. Karas,
V.F. Onyshchenko
Publication year - 2021
Publication title -
hìmìâ, fìzіka ta tehnologìâ poverhnì/hìmìâ, fìzika ta tehnologìâ poverhnì
Language(s) - English
Resource type - Journals
eISSN - 2518-1238
pISSN - 2079-1704
DOI - 10.15407/hftp12.02.090
Subject(s) - materials science , silicon , crystalline silicon , optoelectronics , nanotechnology , etching (microfabrication) , solar cell , layer (electronics)
We have proposed a new technological solution for the creation of solar energy elements using bilateral structures of macroporous silicon to increase the overall efficiency of converting light energy into electricity. Recently, the research on R&D in solar cell technology has focused mainly on crystalline silicon technologies and photovoltaic systems, including organic ones. The main physical phenomenon that determines the prospects of two-dimensional structures of macroporous silicon with nanocoatings as solar cells is the increase in absorption of electromagnetic radiation and photoconductivity as a result of interaction of optical modes with the developed surface of cylindrical macropores with a barrier on the nanocoating-surface boundary. We fabricated two-sided macroporous silicon structures with nanocoatings for solar cells, including silicon technology, organic nanoformations, and photovoltaic system formation. Silicon is a promising material for the manufacture of structures with a cylindrical geometry of air macropores due to the anisotropy of the cheap process of photoelectrochemical etching. The presence of periodically located cylindrical pores separated by silicon columns provides a large effective surface of the samples and enhanced optical and photophysical characteristics of silicon structures. Polymer composites with nanocoatings with CdS nanocrystals and multilayer carbon nanotubes in polyethyleneimine generate charges of opposite sign on both surfaces of the structures under illumination. The formation of bilateral structures of macroporous silicon with nanocoatings increases the overall energy conversion efficiency in solar cells by up to 60 %. In addition, one can use our proposed solar cells in the upper atmosphere.