
Adaptive operator extrapolation method
Author(s) -
V. V. Semenov,
Dmytro Siryk,
O. S. Kharkov
Publication year - 2021
Publication title -
fìziko-matematične modelûvannâ ta ìnformacìjnì tehnologìï/fìzìko-matematične modelûvannâ ta ìnformacìjnì tehnologìï
Language(s) - English
Resource type - Journals
eISSN - 2617-5258
pISSN - 1816-1545
DOI - 10.15407/fmmit2021.33.143
Subject(s) - extrapolation , lipschitz continuity , hilbert space , operator (biology) , mathematics , computation , bregman divergence , projection (relational algebra) , algorithm , iterative method , set (abstract data type) , dykstra's projection algorithm , mathematical optimization , computer science , mathematical analysis , biochemistry , chemistry , repressor , transcription factor , gene , programming language
This paper is devoted to the study of nоvel algorithm with Bregman projection for solving variational inequalities in Hilbert space. Proposed algorithm is an adaptive version of the operator extrapolation method, where the used rule for updating the step size does not require knowledge of Lipschitz constants and the calculation of operator values at additional points. An attractive feature of the algorithm is only one computation at the iterative step of the Bregman projection onto the feasible set.