Open Access
Течія неньютонівської рідини в екструзійному апараті для тривимірного друку
Author(s) -
А.Ф. Булат,
В.І. Єлісєєв,
Є.В. Семененко,
М.М. Стадничук,
Б.О. Блюсс
Publication year - 2021
Publication title -
dopovidi nacionalʹnoï akademiï nauk ukraïni/dopovìdì nacìonalʹnoï akademìï nauk ukraïni
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2518-153X
pISSN - 1025-6415
DOI - 10.15407/dopovidi2021.05.025
Subject(s) - political science
Математичні моделі екструдування показують, що під час течії високов’язких рідин в процесі тривимірного друкування виникає проблема нагріву робочого середовища. Вона полягає в тому, що під час подачі матеріалу включається механізм дисипації механічної енергії в теплову, що зумовлює перегрів рідини. У свою чергу це може призводити до невідповідності форм одержуваного виробу. Для стійкого формування необхідно, щоб матеріал, що подається, оплавлявся біля стінок апарата. Перегрів має бути мінімальним, щоб,виходячи з насадка, матеріал міг швидко застигнути, бажано без додаткових обдувних пристроїв. У цій статті розглядається задача про рух полімерної маси в каналі з підігрівом з метою визначення необхідних умов виконання такої операції, виходячи з певних геометричних форм екструдера. Як модельна рідина використовується непружне середовище із в’язкістю, що залежить від температури та градієнтів швидкостей. Це досить широко використовуваний у практичних розрахунках клас неньютонівських модельних рідин для визначення параметрів течії полімерів і передбачення певних властивостей одержуваних виробів. Нехтування пружними властивостями полімерів часто є виправданим у зв’язку з незначністю проявів цих властивостей або з чіткою локалізацією цих ефектів. Для розв’язання задачі, сформульованої в рамках теорії вузького каналу, використовується метод смуг, в межах яких температура приймається постійною, тобто незалежною від поперечної координати. Це дає можливість покласти в основу розв’язання відомі аналітичні вирази для швидкостей з подальшим уточненням їх, у зв’язку зі складною залежністю в’язкості від градієнтів швидкості. Уточнюючи на кожному кроці динамічні параметри течії з попереднього кроку, можна чисельно отримати досить стійкі гладкі розв’язки. Розрахунки були проведені для неньютонівської рідини, близької за своїми властивостями до полімеру АБС-3А. Розрахунки показали, що властивість псевдопластичності, яка притаманна цьому полімеру, відіграє важливу роль у процесі екструдування. Завдяки тому, що зі збільшенням поперечного градієнта поздовжньої швидкості в’язкість цього полімеру значно падає, величина дисипації механічної енергії теж падає, тобто зменшується теплова енергія, що виділяється під час дисипації. Це в свою чергу призводить до меншого нагрівання полімерного матеріалу, що рухається. Отже, виходячи з геометричних розмірів апарата, можна моделювати течію полімерної рідини та підбирати параметри формування і температури рідини на виході з апарата.