z-logo
open-access-imgOpen Access
On the left strongly prime modules and their radicals
Author(s) -
Algirdas Kaučikas
Publication year - 2010
Publication title -
lietuvos matematikos rinkinys
Language(s) - English
Resource type - Journals
eISSN - 2335-898X
pISSN - 0132-2818
DOI - 10.15388/lmr.2011.05
Subject(s) - prime (order theory) , associated prime , radical , mathematics , ring (chemistry) , ideal (ethics) , characterization (materials science) , prime ideal , radical of an ideal , pure mathematics , discrete mathematics , combinatorics , principal ideal ring , chemistry , materials science , nanotechnology , commutative ring , law , commutative property , political science , organic chemistry
We give the new results on the theory of the one-sided (left) strongly prime modules and their strongly prime radicals. Particularly, the conceptually new and short proof of the A.L.Rosenberg’s theorem about one-sided strongly prime radical of the ring is given. Main results of the paper are: presentation of each left stongly prime ideal p of a ring R as p = R ∩ M, where M is a maximal left ideal in a ring of polynomials over the ring R; characterization of the primeless modules and characterization of the left strongly prime radical of a finitely generated module M in terms of the Jacobson radicals of modules of polynomes M(X1, . . . , Xni) .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom