
Estimating the Hurst index of the solution of a stochastic integral equation
Author(s) -
Kęstutis Kubilius,
Dmitrij Melichov
Publication year - 2009
Publication title -
lietuvos matematikos rinkinys
Language(s) - English
Resource type - Journals
eISSN - 2335-898X
pISSN - 0132-2818
DOI - 10.15388/lmr.2009.04
Subject(s) - fractional brownian motion , mathematics , estimator , hurst exponent , quadratic variation , quadratic equation , order (exchange) , combinatorics , brownian motion , mathematical analysis , statistics , geometry , finance , economics
Let X(t) be a solution of a stochastic integral equation driven by fractional Brownian motion BH and let V2n (X, 2) = \sumn-1 k=1(\delta k2X)2 be the second order quadratic variation, where \delta k2X = X (k+1/N) − 2X (k/ n) +X (k−1/n). Conditions under which n2H−1Vn2(X, 2) converges almost surely as n → ∞ was obtained. This fact is used to get a strongly consistent estimator of the Hurst index H, 1/2 < H < 1. Also we show that this estimator retains its properties if we replace Vn2(X, 2) with Vn2(Y, 2), where Y (t) is the Milstein approximation of X(t).