Evolutionary Dynamics of Transposable Elements Following a Shared Polyploidization Event in the Tribe Andropogoneae
Author(s) -
Dhanushya Ramachandran,
Michael R. McKain,
Elizabeth A. Kellogg,
Jennifer Hawkins
Publication year - 2020
Publication title -
g3 genes genomes genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.468
H-Index - 66
ISSN - 2160-1836
DOI - 10.1534/g3.120.401596
Subject(s) - biology , retrotransposon , transposable element , genome , subfunctionalization , genome evolution , ploidy , genetics , gene , evolutionary biology , gene family
Both polyploidization and transposable element (TE) activity are known to be major drivers of plant genome evolution. Here, we utilize the Zea-Tripsacum clade to investigate TE activity and accumulation after a shared polyploidization event. Comparisons of TE evolutionary dynamics in various Zea and Tripsacum species, in addition to two closely related diploid species, Urelytrum digitatum and Sorghum bicolor , revealed variation in repeat content among all taxa included in the study. The repeat composition of Urelytrum is more similar to that of Zea and Tripsacum compared to Sorghum , despite the similarity in genome size with the latter. Although LTR-retrotransposons were abundant in all species, we observed an expansion of the copia superfamily, specifically in Z. mays and T. dactyloides , species that have adapted to more temperate environments. Additional analyses of the genomic distribution of these retroelements provided evidence of biased insertions near genes involved in various biological processes including plant development, defense, and macromolecule biosynthesis. Specifically, copia insertions in Zea and T. dactyloides were significantly enriched near genes involved in abiotic stress response, suggesting independent evolution post Zea-Tripsacum divergence. The lack of copia insertions near the orthologous genes in S. bicolor suggests that duplicate gene copies generated during polyploidization may offer novel neutral sites for TEs to insert, thereby providing an avenue for subfunctionalization via TE insertional mutagenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom