NovelexcGenes Involved in Formation of the Tubular Excretory Canals ofCaenorhabditis elegans
Author(s) -
Hikmat AlHashimi,
Travis J. Chiarelli,
Erik A. Lundquist,
Matthew Buechner
Publication year - 2019
Publication title -
g3 genes genomes genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.468
H-Index - 66
ISSN - 2160-1836
DOI - 10.1534/g3.119.200626
Subject(s) - caenorhabditis elegans , biology , excretory system , caenorhabditis , gene , genetics , anatomy , evolutionary biology
Regulation of luminal diameter is critical to the function of small single-celled tubes, of which the seamless tubular excretory canals of Caenorhabditis elegans provide a tractable genetic model. Mutations in several sets of genes exhibit the Exc phenotype, in which canal luminal growth is visibly altered. Here, a focused reverse genomic screen of genes highly expressed in the canals found 18 genes that significantly affect luminal outgrowth or diameter. These genes encode novel proteins as well as highly conserved proteins involved in processes including gene expression, cytoskeletal regulation, and vesicular and transmembrane transport. In addition, two genes act as suppressors on a pathway of conserved genes whose products mediate vesicle movement from early to recycling endosomes. The results provide new tools for understanding the integration of cytoplasmic structure and physiology in forming and maintaining the narrow diameter of single-cell tubules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom