z-logo
open-access-imgOpen Access
Using Targeted Resequencing for Identification of Candidate Genes and SNPs for a QTL Affecting the pH Value of Chicken Meat
Author(s) -
Xidan Li,
Xiaodong Liu,
Javad Nadaf,
Élisabeth Le Bihan-Duval,
Cécile Berri,
Ian Dunn,
Richard Talbot,
DirkJan de Koning
Publication year - 2015
Publication title -
g3 genes genomes genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.468
H-Index - 66
ISSN - 2160-1836
DOI - 10.1534/g3.115.020552
Subject(s) - quantitative trait locus , family based qtl mapping , genetics , single nucleotide polymorphism , biology , candidate gene , locus (genetics) , genotype , allele , gene , gene mapping , chromosome
Using targeted genetical genomics, a quantitative trait locus (QTL) affecting the initial postmortem pH value of chicken breast muscle (Pectoralis major) on chromosome 1 (GGA1) recently was fine-mapped. Thirteen genes were present in the QTL region of approximately 1 Mb. In this study, 10 birds that were inferred to be homozygous for either the high (QQ) or low (qq) QTL allele were selected for resequencing. After enrichment for 1 Mb around the QTL region, >500 × coverage for the QTL region in each of the 10 birds was obtained. In total 5056 single-nucleotide polymorphisms (SNPs) were identified for which the genotypes were consistent with one of the QTL genotypes. We used custom tools to identify putative causal mutations in the mapped QTL region from these SNPs. Four nonsynonymous SNPs differentiating the two QTL genotype groups were identified within four local genes (PRDX4, EIF2S3, PCYT1B, and E1BTD2). Although these are likely candidate SNPs to explain the QTL effect, 54 additional consensus SNPs were detected within gene-related regions (untranslated regions, splicing sites CpG island, and promoter regions) for the QQ birds and 71 for the qq birds. These could also play a role explaining the observed QTL effect. The results provide an important step for prioritizing among a large amount of candidate mutations and significantly contribute to the understanding of the genetic mechanisms affecting the initial postmortem pH value of chicken muscle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom